极市导读
本文提出一种卷积调制模块,利用卷积来建立关系,这比注意力机制在处理高分辨率图像时更高效,称为 Conv2Former。作者在 ImageNet 分类、目标检测和语义分割方面的实验也表明,Conv2Former 比以前基于 CNN 的模型和大多数基于 Transformer 的模型表现得更好。>>加入极市CV技术交流群,走在计算机视觉的最前沿
本文目录1 Conv2Former:Transformer 风格的卷积网络视觉基线模型1 Conv2Former:Transformer 风格的卷积网络视觉基线模型(来自南开大学,字节跳动)1.1 Conv2Former 论文解读1.1.1 背景和动机1.1.2 卷积调制模块1.1.3 Conv2Former 整体架构1.1.4 实验结果
(资料图)
论文名称:Conv2Former: A Simple Transformer-Style ConvNet for Visual Recognition
论文地址:https://arxiv.org/pdf/2211.11943.pdf
1.1.1 背景和动机以 VGGNet、Inception 系列和 ResNet 系列为代表的 2010-2020 年代的卷积神经网络 (ConvNets) 在多种视觉任务中取得了巨大的进展,它们的共同特点是顺序堆叠多个基本模块 (Basic Building Block),并采用金字塔结构 (pyramid network architecture),但是却忽略了显式建模全局上下文信息的重要性。SENet 模块系列模型突破了传统的 CNN 设计思路,将注意力机制引入到 CNN 中以捕获远程依赖,获得了更好的性能。
自从 2020 年以来,视觉 Transformer (ViTs) 进一步促进了视觉识别模型的发展,在 ImageNet 图像分类和下游任务上表现出比最先进的 ConvNets 更好的结果。这是因为与只进行局部建模的卷积操作相比,Transformer 中的自注意力机制能够对全局的成对依赖进行建模,提供了一种更有效的空间信息编码方法。然而,在处理高分辨率图像时,自注意力机制导致的计算成本是相当大的。
为了解决这个问题,一些 2022 年经典的工作试图回答:如何借助卷积操作,打造具有 Transformer 风格的卷积网络视觉基线模型?
比如 ConvNeXt[1]:将标准 ResNet 架构现代化,并使用与 Transformer 相似的设计和训练策略,ConvNeXt 可以比一些 Transformer 表现得更好。
从原理和代码详解FAIR去年的惊艳之作:全新的纯卷积模型ConvNeXt
再比如 HorNet[2]:通过建模高阶的相互作用,使得纯卷积模型可以做到像 Transformer 一样的二阶甚至更高的相互作用。
精度超越ConvNeXt的新CNN!HorNet:通过递归门控卷积实现高效高阶的空间信息交互
再比如 RepLKNet[3],SLaK[4]:通过 31×31 或者 51×51 的超大 Kernel 的卷积,使得纯卷积模型可以建模更远的距离。
又对ConvNets下手了!详解SLaK:从稀疏性的角度将卷积核扩展到 51×51
到目前为止,如何更有效地利用卷积来构建强大的 ConvNet 体系结构仍然是一个热门的研究课题。
1.1.2 卷积调制模块本文的关键就是本小节介绍的卷积调制模块。如下图1所示, 对于传统的 Self-attention, 给定一个序列长度为
式中,
为了简单起见,这里省略了 scale factor,自注意模块的计算复杂度随着序列长度N的增加呈二次增长,带来了更高的计算代价。
在卷积调制模块中, 不通过2式计算相似度得分矩阵
式中,
优势: 卷积调制模块利用卷积来建立关系,这比注意力机制在处理高分辨率图像时更高效。
ConvNeXt 表明,将 ConvNets 的核大小从3扩大到7可以提高分类性能。然而,进一步增加 Kernel 的大小几乎不会带来性能上的提升,反而会在没有重新参数化的情况下增加计算负担。但作者认为,使 ConvNeXt 从大于 7×7的 Kernel Size 中获益很少的原因是使用空间卷积的方式。对于 Conv2Former,当 Kernel Size 从 5×5 增加到 21×21 时,可以观察到一致的性能提升。这种现象不仅发生在 Conv2Former-T (82.8→83.4) 上,也发生在参数为80M+ 的 Conv2Former-B (84.1→84.5) 上。考虑到模型效率,默认的 Kernel Size 大小可以设置为 11×11。
权重策略的优化: 注意这里作者直接将深度卷积的输出作为权重,对线性投影后的特征进行调制。Hadamard 积之前既没有使用激活层,也没有使用归一化层 (例如 Sigmoid 或 LN 层),如果像 SE 模块那样加一个 Sigmoid 函数,会使性能降低 0.5% 以上。
1.1.3 Conv2Former 整体架构如下图3所示,与ConvNeXt 和 Swin Transformer 相似,作者的 Conv2Former 也采用了金字塔架构。总共有4个 Stage,每个 Stage 的特征分辨率依次递减。根据模型大小尺寸,一共设计了5个变体:Conv2Former-N,Conv2Former-T, Conv2Former-S, Conv2Former-B,Conv2Former-L。
当可学习参数数量固定时,如何安排网络的宽度和深度对模型性能有影响。原始的 ResNet-50 将每个 Stage 的块数设置为 (3,4,6,3)。ConvNeXt-T 按照 Swin-T 的模式将 Block 数之比更改为 (3,3,9,3),并对较大的模型将 Block 数之比更改为 (1,1,9,1)。Conv2Former 的设置如下图4所示。可以观察到,对于一个小模型 (参数小于30M),更深的网络表现更好。
ImageNet-1K 实验分为两种,一种是直接在 ImageNet-1K 上面训练和验证,另一种是先在 ImageNet-22K 上预训练,再在 ImageNet-1K 上微调和验证。
ImageNet-1K 实验设置
数据集:ImageNet-1K 训练 300 Epochs,ImageNet-1K 验证。
优化器: AdamW, lr
ImageNet-22K 实验设置
数据集:ImageNet-22K 预训练 90 Epochs,ImageNet-1K 微调 30 Epochs,ImageNet-1K 验证。
如下图5所示是 ImageNet-1K 实验结果。对于小型模型 (< 30M),与 ConvNeXt-T 和 Swin-T 相比,Conv2Former 分别有 1.1% 和 1.7% 的性能提升。即使 Conv2Former-N 只有 15M 参数和 2.2G FLOPs,其性能也与具有 28M 参数和 4.5G FLOPs 的 SwinT-T 相同。对于其他流行的模型,Conv2Former 也比类似模型尺寸的模型表现更好。Conv2Former-B 甚至比 EfficientNetB7 表现得更好 (84.4% vs . 84.3%),后者的计算量是 Conv2Former 的两倍 (37G vs. 15G)。
如下图6所示是 ImageNet-22K 的实验结果。作者遵循 ConvNeXt 中使用的设置来训练和微调模型。与 ConvNeXt 的不同变体相比,当模型尺寸相似时,Conv2Former 都表现得更好。此外,我们可以看到,当在更大的分辨率384×384 上进行微调时,Conv2Former-L 获得了比混合模型 (如 CoAtNet 和 MOAT) 更好的结果,Conv2Former-L 达到了 87.7% 的最佳结果。
如下图8所示是关于卷积核大小的消融实验结果。在 大小增加到 21 × 21 之前,性能增益似乎已经饱和。这个结果与 ConvNeXt 得出的结论截然不同,ConvNeXt 得出的结论是,使用大于 7×7 的 Kernel 不会带来明显的性能提升。
消融实验1:卷积核大小
如下图8所示是关于卷积核大小的消融实验结果。在 Kernel Size 增加到 21 × 21 之前,性能增益已经饱和。这个结果与 ConvNeXt 得出的结论截然不同,ConvNeXt 得出的结论是,使用大于 7×7 的 Kernel Size 不会带来明显的性能提升。这表明 Conv2Former 的做法能比传统方式更有效地利用大 Kernel 的优势。
消融实验2:不同融合策略的影响
如下图8, 9所示是关于不同融合策略影响的消融实验结果。除了上述两种融合策略外, 作者还尝试使用其他方法来融合特征映射, 包括在
直筒架构实验结果
遵循 ConvNeXt 的做法,作者也训练了 Conv2Former 的直筒架构 (Isotropic Models) 版本,结果如下图9所示。作者将 Conv2Former-IS 和 Conv2Former-IB 的块数设置为18,并调整通道数以匹配模型大小。字母 "I" 表示直筒架构,可以看到,对于 22M 参数左右的小型模型,Conv2Former-IS 比 DeiT-S 的表现要好得多。当将模型尺寸放大到 80M+ 时,Conv2Former-IB 达到了 82.7% 的 Top-1 Accuracy,这也比 ConvNeXt-IB 高 0.7%,比 DeiT-B 高0.9%。
目标检测实验结果
如下图10所示是不同骨干网络,以 Mask R-CNN 为检测头和 Cascade Mask R-CNN 为实例分割头在 COCO 数据集的实验结果。训练策略遵循 ConvNeXt。对于小模型,使用 Mask R-CNN 框架时,Conv2Former-T 比 SwinT-T 和 ConvNeXt-T 获得了约 2% AP 的改进。
语义分割实验结果
如下图11所示是不同骨干网络,以 UperNet 为分割头在 ADE20k 上的实验结果。对于不同尺度的模型,我们的Conv2Former可以优于Swin Transformer和ConvNeXt。
总结本文试图回答:如何借助卷积操作,打造具有 Transformer 风格的卷积网络视觉基线模型。本文提出一种卷积调制模块,利用卷积来建立关系,这比注意力机制在处理高分辨率图像时更高效。最终的模型称为 Conv2Former,它通过只使用卷积和 Hadamard 积,简化了注意力机制。卷积调制操作是一种利用大核卷积的更有效的方法。作者在 ImageNet 分类、目标检测和语义分割方面的实验也表明,Conv2Former 比以前基于 CNN 的模型和大多数基于 Transformer 的模型表现得更好。
参考
^A ConvNet for the 2020s^HorNet: Efficient High-Order Spatial Interactions with Recursive Gated Convolutions^Scaling Up Your Kernels to 31x31: Revisiting Large Kernel Design in CNNs^More ConvNets in the 2020s: Scaling up Kernels Beyond 51 × 51 using Sparsity公众号后台回复“CNN100”,获取100 篇 CNN 必读的经典论文资源下载
极市干货
技术干货:数据可视化必须注意的30个小技巧总结|如何高效实现矩阵乘?万文长字带你从CUDA初学者的角度入门实操教程:Nvidia Jetson TX2使用TensorRT部署yolov5s模型|基于YOLOV5的数据集标注&训练,Windows/Linux/Jetson Nano多平台部署全流程#极市平台签约作者#
科技猛兽
知乎:科技猛兽
清华大学自动化系19级硕士
研究领域:AI边缘计算 (Efficient AI with Tiny Resource):专注模型压缩,搜索,量化,加速,加法网络,以及它们与其他任务的结合,更好地服务于端侧设备。
作品精选
搞懂 Vision Transformer 原理和代码,看这篇技术综述就够了用Pytorch轻松实现28个视觉Transformer,开源库 timm 了解一下!(附代码解读)轻量高效!清华智能计算实验室开源基于PyTorch的视频 (图片) 去模糊框架SimDeblur投稿方式:添加小编微信Fengcall(微信号:fengcall19),备注:姓名-投稿△长按添加极市平台小编觉得有用麻烦给个在看啦~↑点击蓝字关注极市平台作者丨科技猛兽编辑丨极市平台极市导读本文提出一种卷积调制模块,利用卷积来建立关系,这比注意力机制在处理高分辨率
CFi CN讯:国金证券股份有限公司(简称“国金证券”)为中珠医疗控股股份有限公司(以下简称“中珠医疗”或“公司”)2015年发行股份购买...
优势:本周射手座在事业上态度积极乐观,行动力也不错,求职的射手座会有好消息哦,能找到一段稳定的长期的工作,做生意的射手座会有新的发展
微笑是阳光,拨开你眼前的阴霾;微笑也是牵挂,挂满夜空闪闪发光。那些自信的、奋斗的、青春的、治愈的、温暖的微笑,正是我们平凡生活的解药
题美超长法案急速“通关”的背后。年关将近,美国国会参众两院在间隔不到一天之间先后批准了1 7万亿美元巨额联邦政府拨款法案。两党议员吵...
关于影视、音乐神器小雷上次都已经分享过了,今天就来照顾一下喜欢看漫画的小伙伴,让苹果用户也能免费看遍全网漫画!这个工具自带了20多条漫
网贷逾期一般会上征信,有些借贷机构在用户逾期后一天后就会上报给征信机构,而有些借贷机构则是会在几天后上报给征信机构,因为有些借贷机构可
截至2022年12月23日收盘,狮头股份(600539)报收于6 69元,下跌2 76%,换手率2 51%,成交量5 77万手,成交额3875 63万元。12月
随着疫情政策的放开,公司的同事、身边的朋友陆续中招,公司里上班戴口罩的越来越多,上班的人却每天都在减少。我一直的心态都是,反正迟早都
证券代码:000625(200625) 证券简称:长安汽车(长安B) 公告编号:2022-82
东吴证券国际经纪有限公司陈睿彬近期对宁德时代进行研究并发布了研究报告《宁德时代:与本田签订123GWh长单,全球龙头地位稳固》,本报告对宁
金隅集团(601992)12月22日在投资者关系平台上答复了投资者关心的问题。
促进工伤预防和职业康复,分散用人单位的工伤风险,制定本条例并于2004年1月1日起施行。职工有下列情形之一的,应当认定为工伤:1、在工作时间
(原标题:*ST天马:《重整计划》对债权人无限售期的规定,重整投资人的限售期为12个月)同花顺(300033)金融研究中心12月21日讯,有投资者向
保日圓舉動恐衝擊全球債市
通宝能源:山西通宝能源股份有限公司关于召开2023年第一次临时股东大会的通知
同花顺(300033)金融研究中心12月20日讯,有投资者向丰立智能提问,董秘你好,公司有产品应用到西门子的特高压电网控制系统以及启洋电机的EPB
12月19日,南方创新驱动混合A最新单位净值为0 7153元,累计净值为0 7153元,较前一交易日下跌1 16%。历史数据显示该基金近1个月下跌4 72%,近
网贷逾期一般会上征信,有些借贷机构在用户逾期后一天后就会上报给征信机构,而有些借贷机构则是会在几天后上报给征信机构,因为有些借贷机构可
网贷逾期一般会上征信,有些借贷机构在用户逾期后一天后就会上报给征信机构,而有些借贷机构则是会在几天后上报给征信机构,因为有些借贷机构可
网贷逾期一般会上征信,有些借贷机构在用户逾期后一天后就会上报给征信机构,而有些借贷机构则是会在几天后上报给征信机构,因为有些借贷机构可
证券代码:002259 证券简称:ST 升达 公告编号:2022-062 四川升达林业产业股份有限公司 本公
varplayer=polyvPlayer({ & 039;wrap & 039;: & 039; plv_608c319f9f26bfadb88ec3a063d5960f_6 & 039;, & 039;width & 039;:...
合同最重要的部分一般包括以下条款:(一)当事人的名称或者姓名和住所;(二)标的;(三)数量;(四)质量;(五)价款或者报酬;(六)履
近段时间看过很多网友分享的桌搭布置,发现大部分人只追求美观好看,却忽略了几个最重要的事情,就是实用性便利性,趁着周末没什么事,索性也
(原标题:国家发改委:总体上看,我国投资需求潜力仍然巨大)证券时报网讯,据国家发改委网站消息,国家发展改革委新闻发言人就当前经济社会
证券代码:688256 证券简称:寒武纪 中科寒武纪科技股份有限公司
本月初,微软Edge浏览器开发版上线了110 0 1543 0版本,正式取消了对Win7 8 8 1版本的支持,仅保留Win10 11两个版本。今天,Edge推
川仪股份(603100)12月15日在投资者关系平台上答复了投资者关心的问题。
博世科:关于广西博世科环保科技股份有限公司会计估计变更专项说明的审核报告
广告
X 关闭
广告
X 关闭
管好居家“神兽” 家长应先“自救”
疫情中的导游危中寻机
花钱就能“随心改”?代改IP地址暗藏隐私泄露风险
网上N95、KN95口罩宣传花样太多 信科学别信忽悠